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Branch and Bound Algorithms

(This material is not covered in the text.  See the “Recommended 
Readings” for some online resources.)

The year is 1927.  

You are excavating in the Valley of the Kings, in Egypt.  

You have found the start of a path to King Tut's tomb, but your 
map is incomplete.  
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Branch and Bound Algorithms

Your map guarantees that there is a route that will get you to 
Tut’s Tomb in no more than 9 hours.

You send out a scout, and after travelling for 1 hour she comes to 
a crossroad.

She calls to say there are three ways she could go.  

How to choose?
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She tells you there are sign posts on the paths:

The sign on the first path says 
Tut's Tomb : between 2 and 17 hours from here

The sign on the second path says 
Tut's Tomb: between 4 and 10 hours from here

The sign on the third path says 
Tut's Tomb: between 10 and 12 hours from here
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Let’s take a look at that map ...
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This illustrates the essential characteristics of a branch and 
bound solution.  

1.  The problem to be solved is an optimisation problem in which 
we have to make a sequence of decisions.  WLOG, assume we are 
trying to minimise the objective function.

2.  There is an initial upper bound on the optimal solution. 

3.  For any feasible partial solution P, we can compute two things:
- a lower bound on the cost of the best solution that can be 

built from P
- an upper bound on the cost of the best solution that can be 

built from P

 

file:///home/robin/Desktop/Link%20to%20CISC-365%202019W/Website/Record/Road%20to%20Tut's%20Tomb%202019.pdf
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We can think of the algorithm as a form of intelligent back-
tracking.  

We keep track of partial solutions (usually conceptualising them 
as a tree).

For each partial solution, we compute bounds on the complete 
solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal 
solution.

We update our information about the optimal solution.
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We can think of the algorithm as a form of intelligent back-
tracking.  

We keep track of partial solutions (usually conceptualising them 
as a tree).

For each partial solution, we compute bounds on the best 
complete solution obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal 
solution.

We update our information about the optimal solution.
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Let U be an upper bound on the cost of the optimal solution.  U 
can be obtained by randomly generating an arbitrary solution to 
the problem, and using its cost as U.

Let S be the set of partial solutions still under consideration.  

Initially S can consist of all possible “first choices”, or S can 
contain just one element: the partial solution in which no choice 
has been made. 

For each P in S, let (LP,UP) be the bounds on the best possible 
solution that can be built from P.
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While S is non-empty
Choose some P in S.  (different choice rules can be used)
S = S \ {P} (remove P from S)
For Each P’ that can be built from P with one more decision,
    compute (LP’,UP’)
    If LP’ > U, discard P’
    Else 
       If P’ is a partial solution, S = S + {P’}

             Elsif P’ is a full solution with a better cost than the best
                       full solution seen so far, remember P’ as the best
                       full solution

    If UP’ < U, U = UP’ (update global U)
End For Each

End While
Return the solution being remembered
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Practical Considerations

Choosing the partial solution to expand:

Depth first - choose the best child of the most recently        
  expanded partial solution, if any

      - if none, back up to the parent and try from
        there

Breadth first - choose a partial solution closest to the root  
          of the solution tree

Best first - choose the partial solution with the lowest       
lower bound
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Best first is the most used – but we need to think about how to 
manage the set of “live” partial solutions so that we can quickly 
choose the one with the lowest lower bound.

Hmmm, what data structure is really good for giving quick access 
to the smallest value in a set?
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One method is to store the partial solutions in a min-heap:

Each new item can be inserted in O(log t) time, where t is the 
number of partial solutions in the heap.  

Each choice for the next partial solution to be expanded can be 
extracted in  O(log t) time.

Since t may be O(2^n) where n is the number of decisions to be 
made, this gives us O(n) time for selecting the next partial 
solution and for inserting new partial solutions.
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Lower and Upper Bounds

The more accurate the lower and upper bounds for each partial 
solution are, the more effectively the bad branches can be pruned.  

In some applications it may be worth using quite complex 
algorithms to compute good bounds.
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For each partial solution P, the lower bound consists of two parts:
Cost so far: the cost of decisions already made
Guaranteed future cost:  unavoidable costs from future 

decisions

The upper bound also consists of two parts:
Cost so far: same as above
Feasible future cost: the cost of some extension of P to a 

complete solution



CISC-365* 2019 – Branch and Bound

The quality of the initial upper bound can be critically important.

Rather than randomly choosing a solution to give the initial upper 
bound, it is sometimes worthwhile to invest the time to find a 
fairly good solution for this purpose.

This can be done with an heuristic algorithm that runs in 
polynomial time but doesn't always find the optimal answer.  

For example, we might be solving a problem for which there is no 
greedy algorithm solution.  However, we might use a greedy 
algorithm to get the initial upper bound, and then use branch and 
bound to find the optimal solution.
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Why Use “Best First”?

Recall that “best first” means “choose the element of S with the 
lowest lower bound”.

The best expansion for any given partial solution may have a total 
cost anywhere between its bounds.  

So the “best first” strategy may not lead directly to the optimal 
solution … but it has a huge advantage:  we can stop before S is 
empty!
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Generate a solution to get the initial U value; remember this as best_solution
Initialize S
while S is non-empty:

Choose P in S with minimum LP

if LP > U :
           Break # Optimal Solution has been found
       else:
           S = S \ {P}

     for each P’ that can be built from P with one more decision,
           Compute (LP’,UP’)

if P’ is a full solution:
compare it to best_solution and update best_solution if needed

else if LP’ > U:
 discard P’

            else 
                     S = S + {P’}

                 if UP’ < U, U = UP’

     end for each
end while
Return best_solution
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The big differences between this version of the algorithm and the 
original are: 

• now we return full solutions back into S, instead of keeping 
track of the best one we have seen

• As soon as a full solution in S is selected, we stop (even if S 
is still full of partial solutions)

This is valid because when a full solution P is generated, its lower 
bound and upper bound are equal (there is no more uncertainty), 
and when a full solution is selected, its cost is <= the best 
possible expansion of all other items in S (this is how P is 
chosen).  Thus there can be no other solution that beats this one.
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Let’s do an example!

The 0-1 Knapsack Problem:  We have a collection of objects, 
each with a known volume and a known value.  We have a 
knapsack with a known capacity.  We want to choose the most 
valuable set of objects that will fit in the knapsack.

We know this is an NP-Complete problem.  

With n objects to choose from, there are potentially 2n possible 
solutions to be considered (every subset of the set of objects).

But with a branch and bound algorithm, we can try to cut this 
down a bit.
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First, what is our objective function?

The obvious one is to compute the value of items chosen, and try 
to maximise it ...
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First, what is our objective function?

The obvious one is to compute the value of objects chosen, and 
try to maximise it …

… except that we have developed the algorithm in terms of 
minimisation.

So let’s compute the value of the objects not chosen - minimising 
this will maximise the value of the set of objects we choose.
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Second, how can we conceptualise this as a sequence of 
decisions?
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Second, how can we conceptualise this as a sequence of 
decisions?

Easy - list the objects in some order.  At each stage, we make the 
decision to include the next object or not.
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Choosing a solution to get an initial upper bound:

We can use a simple greedy algorithm, based on choosing the 
object with the maximum ratio of value to volume.  



CISC-365* 2019 – Branch and Bound

Computing lower and upper bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all 
items already excluded.  This certainly works as a lower bound on 
the cost of all extensions of the partial solution … but we can do 
better.  How?
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Computing lower bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all 
items already excluded.  This certainly works as a lower bound on 
the cost of all extensions of the partial solution … but we can do 
better.  How?

We can exclude all objects yet to be considered which will not fit 
in the knapsack on top of the objects already chosen.
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Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a 
simple and valid extension is to imagine that we will also leave 
out of the knapsack all the objects not yet considered.  But we can 
do better than that ...
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Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a 
simple and valid extension is to imagine that we will also leave 
out of the knapsack all the objects not yet considered.  But we can 
do better than that ...

Remember that any solution gives us an upper bound on the cost 
of an optimal solution …

so applying the greedy heuristic to the remaining objects will give 
us a better upper bound for the current partial solution.
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Please see the posted spreadsheet for a fully worked out example 
of developing a B&B algorithm for the 01-Knapsack Problem.
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