
CISC-365* 2019 – Branch and Bound

Branch and Bound Algorithms

(This material is not covered in the text. See the “Recommended
Readings” for some online resources.)

The year is 1927.

You are excavating in the Valley of the Kings, in Egypt.

You have found the start of a path to King Tut's tomb, but your
map is incomplete.

CISC-365* 2019 – Branch and Bound

Branch and Bound Algorithms

Your map guarantees that there is a route that will get you to
Tut’s Tomb in no more than 9 hours.

You send out a scout, and after travelling for 1 hour she comes to
a crossroad.

She calls to say there are three ways she could go.

How to choose?

CISC-365* 2019 – Branch and Bound

She tells you there are sign posts on the paths:

The sign on the first path says
Tut's Tomb : between 2 and 17 hours from here

The sign on the second path says
Tut's Tomb: between 4 and 10 hours from here

The sign on the third path says
Tut's Tomb: between 10 and 12 hours from here

CISC-365* 2019 – Branch and Bound

Let’s take a look at that map ...

CISC-365* 2019 – Branch and Bound

This illustrates the essential characteristics of a branch and
bound solution.

1. The problem to be solved is an optimisation problem in which
we have to make a sequence of decisions. WLOG, assume we are
trying to minimise the objective function.

2. There is an initial upper bound on the optimal solution.

3. For any feasible partial solution P, we can compute two things:
- a lower bound on the cost of the best solution that can be

built from P
- an upper bound on the cost of the best solution that can be

built from P

file:///home/robin/Desktop/Link%20to%20CISC-365%202019W/Website/Record/Road%20to%20Tut's%20Tomb%202019.pdf

CISC-365* 2019 – Branch and Bound

We can think of the algorithm as a form of intelligent back-
tracking.

We keep track of partial solutions (usually conceptualising them
as a tree).

For each partial solution, we compute bounds on the complete
solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal
solution.

We update our information about the optimal solution.

CISC-365* 2019 – Branch and Bound

We can think of the algorithm as a form of intelligent back-
tracking.

We keep track of partial solutions (usually conceptualising them
as a tree).

For each partial solution, we compute bounds on the complete
solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal
solution.

We update our information about the optimal solution.

CISC-365* 2019 – Branch and Bound

We can think of the algorithm as a form of intelligent back-
tracking.

We keep track of partial solutions (usually conceptualising them
as a tree).

For each partial solution, we compute bounds on the complete
solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal
solution.

We update our information about the optimal solution.

CISC-365* 2019 – Branch and Bound

We can think of the algorithm as a form of intelligent back-
tracking.

We keep track of partial solutions (usually conceptualising them
as a tree).

For each partial solution, we compute bounds on the complete
solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal
solution.

We update our information about the optimal solution.

CISC-365* 2019 – Branch and Bound

We can think of the algorithm as a form of intelligent back-
tracking.

We keep track of partial solutions (usually conceptualising them
as a tree).

For each partial solution, we compute bounds on the complete
solutions obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal
solution.

We update our information about the optimal solution.

CISC-365* 2019 – Branch and Bound

We can think of the algorithm as a form of intelligent back-
tracking.

We keep track of partial solutions (usually conceptualising them
as a tree).

For each partial solution, we compute bounds on the best
complete solution obtainable from that point.

At each step, we choose a partial solution to expand.

We eliminate partial solutions that cannot lead to the optimal
solution.

We update our information about the optimal solution.

CISC-365* 2019 – Branch and Bound

Let U be an upper bound on the cost of the optimal solution. U
can be obtained by randomly generating an arbitrary solution to
the problem, and using its cost as U.

Let S be the set of partial solutions still under consideration.

Initially S can consist of all possible “first choices”, or S can
contain just one element: the partial solution in which no choice
has been made.

For each P in S, let (LP,UP) be the bounds on the best possible
solution that can be built from P.

CISC-365* 2019 – Branch and Bound

While S is non-empty
Choose some P in S. (different choice rules can be used)
S = S \ {P} (remove P from S)
For Each P’ that can be built from P with one more decision,
 compute (LP’,UP’)
 If LP’ > U, discard P’
 Else
 If P’ is a partial solution, S = S + {P’}

 Elsif P’ is a full solution with a better cost than the best
 full solution seen so far, remember P’ as the best
 full solution

 If UP’ < U, U = UP’ (update global U)
End For Each

End While
Return the solution being remembered

CISC-365* 2019 – Branch and Bound

Practical Considerations

Choosing the partial solution to expand:

Depth first - choose the best child of the most recently
 expanded partial solution, if any

 - if none, back up to the parent and try from
 there

Breadth first - choose a partial solution closest to the root
 of the solution tree

Best first - choose the partial solution with the lowest
lower bound

CISC-365* 2019 – Branch and Bound

Best first is the most used – but we need to think about how to
manage the set of “live” partial solutions so that we can quickly
choose the one with the lowest lower bound.

Hmmm, what data structure is really good for giving quick access
to the smallest value in a set?

CISC-365* 2019 – Branch and Bound

One method is to store the partial solutions in a min-heap:

Each new item can be inserted in O(log t) time, where t is the
number of partial solutions in the heap.

Each choice for the next partial solution to be expanded can be
extracted in O(log t) time.

Since t may be O(2^n) where n is the number of decisions to be
made, this gives us O(n) time for selecting the next partial
solution and for inserting new partial solutions.

CISC-365* 2019 – Branch and Bound

Lower and Upper Bounds

The more accurate the lower and upper bounds for each partial
solution are, the more effectively the bad branches can be pruned.

In some applications it may be worth using quite complex
algorithms to compute good bounds.

CISC-365* 2019 – Branch and Bound

For each partial solution P, the lower bound consists of two parts:
Cost so far: the cost of decisions already made
Guaranteed future cost: unavoidable costs from future

decisions

The upper bound also consists of two parts:
Cost so far: same as above
Feasible future cost: the cost of some extension of P to a

complete solution

CISC-365* 2019 – Branch and Bound

The quality of the initial upper bound can be critically important.

Rather than randomly choosing a solution to give the initial upper
bound, it is sometimes worthwhile to invest the time to find a
fairly good solution for this purpose.

This can be done with an heuristic algorithm that runs in
polynomial time but doesn't always find the optimal answer.

For example, we might be solving a problem for which there is no
greedy algorithm solution. However, we might use a greedy
algorithm to get the initial upper bound, and then use branch and
bound to find the optimal solution.

CISC-365* 2019 – Branch and Bound

Why Use “Best First”?

Recall that “best first” means “choose the element of S with the
lowest lower bound”.

The best expansion for any given partial solution may have a total
cost anywhere between its bounds.

So the “best first” strategy may not lead directly to the optimal
solution … but it has a huge advantage: we can stop before S is
empty!

CISC-365* 2019 – Branch and Bound

Generate a solution to get the initial U value; remember this as best_solution
Initialize S
while S is non-empty:

Choose P in S with minimum LP

if LP > U :
 Break # Optimal Solution has been found
 else:
 S = S \ {P}

 for each P’ that can be built from P with one more decision,
 Compute (LP’,UP’)

if P’ is a full solution:
compare it to best_solution and update best_solution if needed

else if LP’ > U:
 discard P’

 else
 S = S + {P’}

 if UP’ < U, U = UP’

 end for each
end while
Return best_solution

CISC-365* 2019 – Branch and Bound

The big differences between this version of the algorithm and the
original are:

• now we return full solutions back into S, instead of keeping
track of the best one we have seen

• As soon as a full solution in S is selected, we stop (even if S
is still full of partial solutions)

This is valid because when a full solution P is generated, its lower
bound and upper bound are equal (there is no more uncertainty),
and when a full solution is selected, its cost is <= the best
possible expansion of all other items in S (this is how P is
chosen). Thus there can be no other solution that beats this one.

CISC-365* 2019 – Branch and Bound

Let’s do an example!

The 0-1 Knapsack Problem: We have a collection of objects,
each with a known volume and a known value. We have a
knapsack with a known capacity. We want to choose the most
valuable set of objects that will fit in the knapsack.

We know this is an NP-Complete problem.

With n objects to choose from, there are potentially 2n possible
solutions to be considered (every subset of the set of objects).

But with a branch and bound algorithm, we can try to cut this
down a bit.

CISC-365* 2019 – Branch and Bound

First, what is our objective function?

The obvious one is to compute the value of items chosen, and try
to maximise it ...

CISC-365* 2019 – Branch and Bound

First, what is our objective function?

The obvious one is to compute the value of items chosen, and try
to maximise it …

… except that we have developed the algorithm in terms of
minimisation.

CISC-365* 2019 – Branch and Bound

First, what is our objective function?

The obvious one is to compute the value of objects chosen, and
try to maximise it …

… except that we have developed the algorithm in terms of
minimisation.

So let’s compute the value of the objects not chosen - minimising
this will maximise the value of the set of objects we choose.

CISC-365* 2019 – Branch and Bound

Second, how can we conceptualise this as a sequence of
decisions?

CISC-365* 2019 – Branch and Bound

Second, how can we conceptualise this as a sequence of
decisions?

Easy - list the objects in some order. At each stage, we make the
decision to include the next object or not.

CISC-365* 2019 – Branch and Bound

Choosing a solution to get an initial upper bound:

We can use a simple greedy algorithm, based on choosing the
object with the maximum ratio of value to volume.

CISC-365* 2019 – Branch and Bound

Computing lower and upper bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all
items already excluded. This certainly works as a lower bound on
the cost of all extensions of the partial solution … but we can do
better. How?

CISC-365* 2019 – Branch and Bound

Computing lower bounds for partial solutions:

Each partial solution contains a “cost so far” - the value of all
items already excluded. This certainly works as a lower bound on
the cost of all extensions of the partial solution … but we can do
better. How?

We can exclude all objects yet to be considered which will not fit
in the knapsack on top of the objects already chosen.

CISC-365* 2019 – Branch and Bound

Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a
simple and valid extension is to imagine that we will also leave
out of the knapsack all the objects not yet considered. But we can
do better than that ...

CISC-365* 2019 – Branch and Bound

Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a
simple and valid extension is to imagine that we will also leave
out of the knapsack all the objects not yet considered. But we can
do better than that ...

Remember that any solution gives us an upper bound on the cost
of an optimal solution ...

CISC-365* 2019 – Branch and Bound

Computing upper bounds for partial solutions:

The “cost so far” obviously contributes to the upper bound, and a
simple and valid extension is to imagine that we will also leave
out of the knapsack all the objects not yet considered. But we can
do better than that ...

Remember that any solution gives us an upper bound on the cost
of an optimal solution …

so applying the greedy heuristic to the remaining objects will give
us a better upper bound for the current partial solution.

CISC-365* 2019 – Branch and Bound

Please see the posted spreadsheet for a fully worked out example
of developing a B&B algorithm for the 01-Knapsack Problem.

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

